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Abstract 

 
In this paper we empirically analyze the relationship between transit service headway 

deviations and passenger loads, using archived data from Tri-Met’s automatic vehicle 

location and automatic passenger counter systems.  The analysis employs two-stage least 

squares estimation to account for the simultaneous relationship between headway 

deviations and loads.  Controlling for the effects of passenger activity on delay, the 

results indicate that the observed incidence of excess passenger loads is systematically 

attributable to deviations from scheduled headways.  In turn, analysis of the causes of 

headway deviations served to identify possible operations control actions that would 

improve service regularity and, consequently, reduce incidences of overloading and 

forestall the need for additional service. 

 
 

Introduction 

 Maintaining reliable service is important for both transit passengers and transit 

providers.  Surveys have shown that reliability is strongly related to passenger 

satisfaction and perceptions of service quality (TCRP, 1999), while stated preference 

experiments have found that passengers implicitly value reliability (Bates et al., 2001) 

and consider it in their mode choice decisions (Prioni and Hensher, 2000).  Unreliable 

service results in additional waiting time for passengers (Welding, 1957; Turnquist, 1978; 

Bowman and Turnquist, 1981; Wilson et al., 1992a), the unit cost of which has been 

estimated to exceed the cost of in-vehicle travel time by a factor of three (Mohring et al., 

1987). 
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 Unreliable service also has negative economic consequences for transit providers.  

Effective service capacity is diminished when vehicles become unevenly spaced and 

platooning, or “bus bunching,” occurs.  Bus bunching results in more frequent passenger 

overloads, which necessitates provision of additional service.  Such service expansions 

would not be required if vehicles were more regularly spaced and passenger loads were 

more evenly distributed.  Capital investments in the vehicle fleet are affected because 

reliability problems are most acute during peak service periods (Strathman et. al., 2000). 

 There has been considerable research on the underlying causes of unreliable 

service (Sterman and Schofer, 1976; Abkowitz, 1978; Turnquist and Bowman, 1980; 

Strathman and Hopper, 1993; Strathman et al., 2002).  Primary causes of unreliability 

have been attributed to route characteristics (e.g., length, the number of signalized 

intersections, the extent of on-street parking, stop spacing), operating conditions (e.g., 

traffic volume, service frequency, passenger activity), and vehicle operators (e.g., 

departure delays, operator-specific behavior differences).  Considerable attention has also 

been devoted to identifying operations control actions to improve reliability (Turnquist 

and Blume, 1980; Turnquist, 1982; Abkowitz and Engelstein, 1984; Abkowitz and Tozzi, 

1987; Levinson, 1991; Wilson et al., 1992b; Strathman et al., 2001).  Examples of control 

actions include vehicle holding, stop-skipping, leap-frogging and short-turning. 

 While much has been learned about the causes of unreliable service and the 

corrective actions that can be taken, research on this subject has been hampered by the 

costs of manual data collection.  However, recent deployment of Advanced Public Transit 

System (APTS) technologies, particularly automatic vehicle location (AVL) and 

automatic passenger counter (APC) systems, has transformed the data environment for 
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transit providers.  Comprehensive data on vehicle operations and passenger activity are 

now being recovered and archived at very low cost.  The new data environment is 

facilitating more extensive and detailed analysis of transit operations, the benefits of 

which are reflected in service planning, scheduling, dispatching and operations control 

improvements (Casey, 2000; Strathman et al., 2002). 

 This paper explores an application of archived AVL-APC data to analysis of bus 

bunching and its effects on passenger loads.  Tri-Met, the transit provider for the 

Portland, Oregon, metropolitan region, is the focus of the study.  The analysis is 

complicated by the bi-directional relationship between vehicle spacing and passenger 

activity during peak service periods.  Under conditions of frequent service and constant 

demand, passenger loads can be expected to vary directly with deviations from scheduled 

headways.  Positive headway deviations produce larger-than-scheduled headways, 

resulting in larger passenger loads, while negative deviations result in smaller loads.  

Conversely, passenger activity can also contribute to headway delays.  Thus the 

simultaneity between headways and passenger loads must be reconciled to assess the true 

consequences of reliability improvements. 

 The remainder of this paper is organized as follows.  In the next section, Tri-

Met’s automated bus dispatch system (BDS) technology and data recovery environment 

are described.  This is followed by a description of the process used to select routes for 

analysis.  A model relating peak passenger loads to headway deviations is then specified 

and estimated.  Model results are presented along with an evaluation of the effects of 

progressive reductions in headway deviations.  The paper concludes with a discussion of 

the implications of the findings. 



 6

 

Tri-Met’s BDS 

 Tri-Met’s BDS became fully operational in 1998.  Its main APTS components 

include the following: 

 
• Automatic Vehicle Location (AVL) using a satellite-based global positioning 

system (GPS); 

• Voice and data communication between operators and dispatchers within a pre-

existing mobile radio system; 

    • On-board computer for temporary data storage, a vehicle control head displaying 

schedule adherence information to operators, detection and reporting of schedule 

and route deviations to dispatchers, and two-way, pre-programmed digital 

messaging between operators and dispatchers; 

    • Infrared beam-type Automatic Passenger Counters (APCs) installed on 

approximately 70% of the existing bus fleet and all new bus acquisitions; 

    • Modern dispatching center containing six CAD/AVL consoles. 

 

 With AVL, a vehicle’s current status is related to its scheduled status to determine 

schedule deviation in real time, which is displayed on the vehicle’s control head.  When 

schedule deviations exceed pre-determined thresholds, an exception report is 

automatically transmitted to the dispatch center.  Exception reports are also transmitted 

when vehicles deviate from their routes.  Schedule and location exception reports are 

listed on the dispatcher’s CAD screen along with other attention requests (e.g., 

mechanical problems, traffic and on-board incidents, delays, etc.) that are transmitted by 
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vehicle operators from the control head keypad.  In addition to schedule status, the 

control head screen displays freeform text messages sent by dispatchers to operators.  The 

on-board system also contains a covert microphone and silent alarm key, providing 

enhanced security. 

 Operating and passenger data are automatically recorded to a memory card 

located in the vehicle control head.  A data record is written at each bus stop, producing 

approximately 500,000 stop records per day.  In addition, a data record is written at each 

location where an operator-initiated text message is generated or a schedule exception 

occurs, producing about 25,000 event records per day.  Stop records contain the 

following information: route number, direction, trip number, date, vehicle number, 

operator ID, bus stop ID, stop arrival time, stop departure time, boardings, alightings and 

passenger load (on APC-equipped vehicles), door opening, lift usage, dwell time, 

maximum speed since the prior stop, longitude, and latitude. 

 When vehicles return to garages at the end of each day the data are transferred 

from the memory card to a personal computer and then uploaded to a server on Tri-Met’s 

local area network.  A post processing operation then matches the stop records to the 

schedule database.  About 97 percent of the stop records are successfully matched with 

the schedule database.  Tri-Met’s data warehouse provides on-line access to data 

recovered over the prior 6-9 month period (approximately 120 million stop and event 

records, along with the related schedules).  “Older” stop, event and schedule data, 

extending back to 1998, is archived off-line. 

 About 30 mid to large-size transit properties have deployed AVL-APC systems 

(Casey, 1999).  However, there are several features that distinguish Tri-Met’s system 
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from others.  First, its near fleet-wide deployment of APCs contrasts with very limited 

deployment elsewhere, which facilitates detailed analysis of passenger activity in relation 

to schedule and headway adherence.  Second, Tri-Met’s system utilizes on-board 

computers for data storage.  Other systems typically lack on-board computers, and 

therefore archive data that is radio-transmitted on a periodic polling cycle (usually 60-90 

seconds).  Archived polled data have several shortcomings:  1) radio bandwidth 

limitations constrain both the polling frequency and the amount of data that can be 

transmitted, and 2) since polled data are temporally rather than spatially-referenced, 

operational status at specific locations (i.e., bus stops, time points, and route origins and 

destinations) must be interpolated, which introduces measurement error. 

 
Selection of Study Routes 

 The study period extended from December 2001 through May 2002, and the focus 

was limited to weekday bus service.  The selection of routes for analysis was based on 

several factors.  Data were obtained for mean passenger loads at the peak load point, the 

coefficient of variation (CV) of passenger loads, and the number of observations (trips) 

with valid APC data1 for all radial and cross-town routes in the Tri-Met system for the 

peak hour of in-bound service during the mornings and out-bound service during the 

afternoons.  Routes with a high mean and coefficient of variation of passenger loads were 

identified, under the assumption that these routes would tend to experience the most 

severe instances of bus bunching and overloading.  An effort was also made to identify 

routes that were generally representative of Tri-Met’s service typology, which includes 

radial routes serving downtown Portland and cross-town routes serving peripheral 

locations. 
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 Ten of Tri-Met’s 99 bus routes were identified for analysis.  Table 1 presents 

relevant passenger statistics for the selected routes.  Two of the selected routes (72-

Killingsworth/82nd and 75-39th/Lombard) provide cross-town service and the others 

provide radial service.  Same-numbered routes (e.g., 4-Division and 4-Fessenden) 

represent through-routed service with a changeover point in downtown Portland.  Mean 

peak passenger loads are generally less than bus seat capacity.2  Coefficient of variation 

values generally range from .30 to .40, which is fairly substantial for peak hour service.  

As one would expect, routes with combined high mean loads and CVs tend to experience 

a higher incidence of passenger overloads (e.g., 4-Division, 14-Hawthorne and 15-

Belmont). 

(Table 1 about here) 

 

Analysis of Passenger Loads and Headways 

 Direct examination of route level peak passenger loads in relation to headway 

delay revealed an expected pattern: vehicles whose actual headways are greater than 

scheduled headways tend to have larger loads, and vehicles whose actual headways are 

smaller than scheduled tend to have smaller loads.  This pattern is illustrated in Figure 1 

for morning peak hour in-bound trips on the 14-Hawthorne.3  In this case the mean 

passenger load for trips with positive headway delay is 43.1 persons, while the mean load 

for trips with negative headway delay is 37.7.  This difference in mean loads is 

significant at the .001 level.  It is also apparent in the figure that the relationship between 

passenger loads and headway delay is approximately linear. 

(Figure 1 about here) 
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 Regression analysis was employed to estimate the effect of headway delay on 

peak passenger loads for each of the selected routes and time periods.  The general form 

of the specification was as follows: 

  Load = f(H. Delay, Sch. Hwy, L.F. Bus),  where   (1) 

Load =  the passenger load at the peak load point; 

     H. Delay =  headway delay at the peak load point, in minutes; 

   Sch. Hwy =  scheduled headway, in minutes; 

    L.F. Bus =  a dummy variable equaling one for trips served by low-floor buses.2 

In addition to headway delay effects, passenger loads on a given route in peak hours 

should be influenced by variations in scheduled headways.  In principle, one would 

expect peak hour scheduled headways to be relatively constant.  In practice, however, 

scheduled headways can vary as a result of selectively adding trips to accommodate peak 

demand.  When these selective adjustments occur, schedulers are reluctant to rewrite time 

tables for all peak trips, and scheduled headway differences thus emerge.  The dummy 

variable for low-floor buses is included to account for the potentially limiting effect of 

their smaller capacities compared to Tri-Met’s standard 40-foot coaches. 

 As noted earlier, the passenger load equation is subject to simultaneous equations 

bias, given the recognition that passenger activity can also be expected to contribute to 

headway delay4 . To remedy this problem, the load equation was estimated using two-

stage least squares (2SLS).  In this approach, an equation relating headway delay to 

scheduled headways, the low-floor bus dummy, and several exogenous variables is first 

estimated.  A desirable property of the exogenous variables is that they influence 

headway delay but are unrelated to passenger loads.  Estimates of headway delay are then 
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substituted for the observed headway delay values in a second stage estimation of the 

passenger load equation. 

The general form of the first stage headway delay equation is as follows: 

   H. Delay = f(Sch. Hwy, L.F. Bus, Opr. Exp., Dist. to P.L.P, H. Delayo),        (2) 

where the exogenous variables are defined as 

     Opr. Exp. =  vehicle operator experience, in years; 

Dist to P.L.P. =  distance from the route origin to the peak load point, in miles; 

     H. Delay0 = headway delay at the route origin, in minutes. 

 
It is expected that buses with more experienced operators will tend to be less 

subject to headway delays, given findings that they require less running time to complete 

their trips relative to less experienced operators (Strathman et al., 2002).  The location of 

the peak load point tends to vary at the trip level.  For morning peak hour in-bound radial 

trips, the maximum load point is generally centered at a location just beyond the 

downtown area, while for evening peak hour out-bound trips the maximum load point is 

generally centered somewhat closer to the edge of the downtown area.  For a given trip, 

we would expect headway delays to be greater when the maximum load point is more 

distant from the origin, given relatively greater exposure to potential delay-causing 

factors (Abkowitz and Tozzi, 1987).  Finally, it is expected that headway delays that 

occur at the trip origin will tend to persist through the peak load point. 

 

Estimation Results 

 The passenger load equation was estimated by 2SLS for each of the 10 routes and 

for both the morning and evening peak hour periods.5  The overall sample consisted of 
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6,393 morning and 6,200 evening peak hour trips.  Route and time period-specific 

parameter estimates are reported in Table 2. 

(Table 2 about here) 

 The parameter estimates for headway delay are significant for eight of the ten 

routes in the morning peak hour, and for all routes in the evening peak hour.  Generally, 

an increase in headway delay of one minute is estimated to result in an approximate 2.6 

person load increase in the morning peak, and a 2.0 person load increase in the evening 

peak.  Alternatively, with respect to the observed variations in headway delay during the 

morning and evening peaks, an increase of one standard deviation in headway delay (2.7 

and 4.0 minutes, respectively) would result in load increases of 7.0 and 8.0 passengers, 

respectively, or approximately 13 and 15% of the standing capacity of Tri-Met’s standard 

buses. 

Compared to headway delay, the estimated effects of scheduled headway 

variations are not as consistently significant: only two of the morning peak routes and 

five of the evening peak routes have significant parameter estimates.  As one would 

expect, when significant, the estimated load effect of a one-minute increase in scheduled 

headway is similar to the effect of an equivalent change in headway delay, given that 

both of these variables define the spacing between vehicles. 

Despite differences in vehicle capacities, only one of the twenty coefficients for 

the low-floor bus dummy variable is significant with the expected sign.  Controlling for 

the estimated load effects associated with headway delays and scheduled headway 

variation, this result indicates that there is sufficient vehicle capacity to serve passenger 

demand, or that instances of overloading (as reported in Table 1) are a consequence of 
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uneven bus spacing rather than an inadequate level of service.  This interpretation is 

illustrated more clearly in Table 3, which shows the estimated effects of progressive 

reductions in headway delays on the incidence of overloading.6  Nominally, 10.4 percent 

of morning peak hour trips and 12.0 percent of evening peak hour trips experienced 

overloads.  Reducing headway delay by 25 percent is estimated to yield an 89.4 percent 

reduction (to 1.1 percent) in morning peak hour overloads, and a 75.8 percent reduction 

(to 2.9 percent) in overloads during the evening peak hour.  Only the 4-Division in the 

evening peak hour experiences any appreciable overloading beyond a 25 percent 

headway delay reduction. 

(Table 3 about here) 

 In order to implement operations control actions to reduce headway delay, it is 

necessary to identify the root causes of the problem.  In this respect, it is worthwhile to 

examine the first-stage regression results for the headway delay equation.  Although the 

primary reason for estimating this equation was to address simultaneity bias in the 

passenger load model, the results also shed light on the causes of headway delay.  To 

illustrate, Table 4 presents the results of the first-stage route-level headway delay 

regressions for evening peak hour trips. 

(Table 4 about here) 

 It is apparent that a primary determinant of headway delay at the peak load point 

is the headway delay status at the beginning of the trip.  Generally, a one-minute 

headway delay at the route origin is estimated to result in an approximate delay at the 

peak load point of 45 seconds.  The distance from the route origin to the peak load point 

is also a generally significant determinant of headway delay, with each mile increment 
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contributing to additional delay of more than one-half minute.  Given that passenger load 

profiles vary from trip to trip, it is hard to consider how operations control actions could 

address this phenomenon. 

Headway delay is estimated to be significantly related to operator experience for 

four of the ten routes.  With the exception of a cross-town route, more experienced 

operators achieve shorter delays.  It is worth recognizing that in peak periods, operators 

with substantial experience are often interspersed with operators with the least experience 

when regular service is augmented by peak service trips (i.e., “trippers”).  Thus, 

experience-related differences in operator performance on a given route tend to be 

greatest during the very times when other operational disruptions also tend to be most 

prevalent.7  The service regularity consequences of operator experience mixing are not 

accounted for in the runcutting and sign-up processes, which link operators to trip blocks.  

For routes with high demand and frequent service, it may be worthwhile to constrain 

assignments to achieve greater homogeneity among operators with respect to experience.  

More generally, experience-related differences among operators point to a hidden cost of 

relying on part-time operators to service peak demand.8 

 Finally, headway delay is estimated to be inversely related to scheduled headways 

for half of the routes in Table 4.  There is no obvious rationale for interpreting this 

finding.  If headways are set to match service capacity with demand, then passenger 

activity per vehicle (a potential cause of delay) should be invariant with respect to the 

size of the headway.  However, we did observe that the coefficient of variation of peak 

loads was smaller for trips with larger scheduled headways, suggesting that the estimated 
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greater delay for trips with shorter headways could be the result of greater passenger 

activity variance. 

 Regarding operations control, the results of the headway delay regressions 

indicate that field supervisors should concentrate their efforts to maintain regularity at the 

route origins.  The effects of reducing headway delay at the origin should carry through 

to the peak load point.  The control actions required to address headway delay at the 

origin would depend on differences in service design.  Through-routed service, for 

example, does not include scheduled layovers at the downtown changeover point.  

Reducing departure delays for evening out-bound trips on these routes would require 

active headway management at the changeover location to improve service regularity.  

Strategies such as Turnquist’s (1982) “prefol” would likely be the most effective in 

reducing headway delay.  In this strategy, lead buses would be held to equalize headways 

among the sequence of affected trips.  For trips with scheduled layovers, headway delays 

at the route origin can be traced to two basic causes:  1) the carry-over of a delay from a 

previous trip; and 2) a late departure following an excessive layover.  When delay from a 

previous trip exceeds the scheduled layover, headway control will be necessary to 

improve regularity.  The existence of a systematic pattern of delay due to insufficient 

layover suggests a schedule that contains inadequate running or recovery time.  When 

delay is smaller than the scheduled layover, field supervisors can restore regularity by 

limiting layover time.  Such action would be subject to working condition provisions in 

the agency’s agreement with the operators.9   

With the implementation of AVL technology, patterns of headway delay and 

excessive layover can be readily documented from archived operations data.  Operations 
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managers should be provided with regular reports on headway delay patterns as part of an 

overall performance monitoring program focused on service quality improvement. 

 

Conclusions 

 This paper has examined variations in bus passenger loads in relation to 

deviations from scheduled headways.  Transit analysts have generally recognized that the 

relationship is subject to simultaneity, with passenger loads positively affected by delay 

and delay positively affected by passenger activity.  Using a two-stage least squares 

approach, we controlled for the latter effect in order to estimate the effects of headway 

delay on peak passenger loads.  The substantial data requirements for estimating the 

relationship between passenger loads and headway delay were met as a result of Tri-

Met’s deployment of AVL and APC technology, and the comprehensive archiving of 

data recovered by these systems. 

 Estimation results indicate that headway delays are a primary cause of passenger 

overloads, and that a modest reduction in headway delay would lead to a substantial 

reduction in overloads.  Further analysis revealed that headway delay at the peak load 

point was strongly related to headway delay status at the route origin, thus pin-pointing 

where field supervisors should be targeting operations control efforts.  A pattern of origin 

headway delay on a route may indicate a schedule problem rather than a need for 

operations control. 

 The implementation of APTS technologies has provided the transit industry with 

an improved means of monitoring and analyzing operations activity.  In the area of 

operations control, well-established practices focusing on maintaining service regularity 
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can potentially become much more effective, given access to AVL and APC information.  

The benefits from service regularity improvements will be shared between transit 

passengers (through reduced waiting time and uncertainty) and transit providers (through 

lower operating and capital costs). 

 Archived operations data are an essential ingredient in the design and monitoring 

dimensions of effective operations control programs.  The information from archived data 

can help in identifying operations problems and deciding on appropriate control actions.  

More generally, the data can also support decision-making on resource allocation 

between the supply and management of transit service.  In this respect, managers need to 

determine what constitutes an “optimal” level of operations management activity, 

recognizing that dedicating resources to operations control comes at the expense of 

reductions elsewhere (primarily in the number of scheduled trips).  Analytically, it can be 

demonstrated that optimality is achieved when the marginal cost of operations 

management is just equal to the marginal benefit to passengers from improved regularity 

plus the marginal avoided cost of unnecessary additional service.  In the pre-APTS era, 

operations managers faced considerable uncertainty in weighing such trade-offs.  

Presently, however, there is a growing wealth of information at their disposal to facilitate 

these decisions.   As a result, the gap between the analytical and the applied decision-

making contexts has shrunk dramatically with the emergence of comprehensive 

operations data produced by new technology. 
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Footnotes 
 

1. Although 70% of the bus fleet is APC-equipped, the assignment of buses to 

routes results in some routes having near-complete APC coverage and others 

having more limited coverage.  Also, equipment malfunctions and post-

processing checks result in the loss of 30-40% the APC trip level records.  For 

example, total daily passenger boardings and alightings per vehicle are 

compared and if the difference exceeds 10% of total boardings, all of the 

day’s APC trip records are screened out. 

2. Two vehicle types are assigned in varying mixes to the study routes.  One type 

is a standard 40 foot bus with a 43-person seat capacity, and the other type is a 

40 foot low-floor bus with a 39-person seat capacity. 

3. Similar patterns were observed for the other nine routes during the morning 

and evening peak hour periods. 

4. If estimation involved pooling of data across routes, or over time for a given 

route, it could also be argued that scheduled headways are subject to 

simultaneous equations bias.  For example, service planners take passenger 

loads into account in determining service frequency.  In the present study, our 

intent is to estimate route-specific passenger load equations for a single 

service period, and under these conditions we would not expect simultaneity 

to be a problem for the scheduled headway variable. 

5. Initial analysis employing the Hausman test (Pindyck and Rubinfeld, 1981) 

confirmed the systematic presence of simultaneous equations bias involving 
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passenger loads and headway delay, thus justifying the choice of 2SLS 

estimation. 

6. These estimates are based on passenger load predictions using the associated 

headway delay, scheduled headway, and low-floor bus parameter estimates 

applied to the observed values of the variables, and progressively reducing the 

observed values of headway delay. 

7. It is generally believed that the “experience effect” related to shorter delays 

for more senior operators is attributable to their abilities to process passengers 

more quickly and to better recognize where and how to recover time in their 

runs.  However, it is also possible that differences in work assignments 

between junior and senior operators are being confounded with experience.  

For example, a part-time operator with a tripper assignment may be less 

concerned about delay if they are returning to the garage after the trip and are 

compensated (“time-slipped”) for any additional time needed to complete 

their assignment.  Moreover, dispatchers and field supervisors are less 

concerned about delays by trippers because they know there are no subsequent 

trips that will be affected. 

8. In larger transit agencies, additional service during peak periods is often 

assigned to part-time operators.  Because part-time operators are compensated 

less, this practice reduces operating costs.  However, operating cost savings 

are undermined if part-time operators experience higher accident rates or 

greater absenteeism and attrition.  Lower operating costs are also undermined 

if greater headway delays by part-time operators lead to additional waiting 
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time for passengers.  It has been noted that runcutting software is very 

sensitive to small wage differences across types of operators (Charles Rivers 

Associates, 2001).  When various offsetting costs are taken into account, 

runcuts that minimize operating costs by designing peak service to rely more 

heavily on part-time operators may not minimize total agency costs and the 

time-related costs to transit passengers. 

9. The agreement between Tri-Met and the operators union requires schedules to 

contain five minutes of layover time for each hour of running time, but also 

states that a layover cannot be guaranteed for each trip. 



 21

References 
 

Abkowitz, M.  1978.  Transit Service Reliability.   Cambridge, MA: USDOT 

Transportation Systems Center and Multisystems, Inc.  (NTIS No. UMTA/MA-

06-0049-78-1). 

Abkowitz, M. and I. Engelstein.  1984.  Methods for maintaining transit service 

regularity.  Transportation Research Record 961, 1-8. 

Abkowitz, M. and J. Tozzi.  1987.  Research contributions to managing transit service 

reliability.  Journal of Advanced Transportation, 21, 47-65. 

Bates, J., J. Polak, P. Jones and A. Cook.  2001.  The valuation of reliability for personal 

travel.  Transportation Research, Part E, 37, 191-229. 

Bowman, L. and M. Turnquist.  1981.  Service frequency, schedule reliability and 

passenger wait times at transit stops.  Transportation Research, Part A, 15, 465-

471. 

Casey, R.  1999. Advanced Public Transportation Systems Deployment in the United 

States.  Report No. DOT-VNTSC-FTA-99-1.  Volpe National Transportation 

Systems Center, Cambridge MA. 

Casey, R.  2000.  What have we learned about Advanced Public Transportation Systems?  

In What Have We Learned About Intelligent Transportation Systems?  Volpe 

Transportation Systems Center, Federal Highway Administration, US Department 

of Transportation, Chapter 5. 

Charles Rivers Associates.  2001.  Part-Time Operators: The Trends and Impacts.  TCRP 

Report 68.  Washington, DC: Transportation Research Board, National Research 

Council. 

Levinson, H.  1991.  Supervision strategies for improved reliability of bus routes.  

NCTRP Synthesis of Transit Practice 15.  Washington, DC: Transportation 

Research Board, National Research Council. 

Mohring, H., J. Schroeter and P. Wiboonchutikula.  1987.  The values of waiting time, 

travel time, and a seat on the bus.  Rand Journal of Economics, 18 (1), 40-56. 



 22

Pindyck, R. and D. Rubinfeld.  1981.  Econometric Models and Economic Forecasts.  

New York: McGraw-Hill Book Co. 

Prioni, P. and D. Hensher.  2000.  Measuring service quality in scheduled bus services.  

Journal of Public Transportation, 3, 51-74. 

Sterman, B. and J. Schofer.  1976.  Factors affecting reliability of urban bus services.  

Transportation Engineering Journal, 102, 147-159. 

Strathman, J. and J. Hopper.  1993.  Empirical analysis of bus transit on-time 

performance.  Transportation Research, Part A, 27, 93-100. 

Strathman, J., K. Dueker, T. Kimpel, R. Gerhart, K. Turner, P. Taylor, S. Callas and D. 

Griffin.  2000.  Service reliability impacts of computer-aided dispatching and 

automatic vehicle location technology: a Tri-Met case study.  Transportation 

Quarterly , 54, 85-102. 

Strathman, J., K. Dueker, T. Kimpel, R. Gerhart, K. Turner, P. Taylor, S. Callas and D. 

Griffin.  2001.  Bus transit operations control: review and an experiment 

involving Tri-Met’s automated Bus Dispatching system.  Journal of Public 

Transportation, 4, 1-26. 

Strathman, J., T. Kimpel, K. Dueker, R. Gerhart and S. Callas.  2002.  Evaluation of 

transit operations: data applications of Tri-Met’s automated bus dispatching 

system.  Transportation, 29, 321-345. 

Transit Cooperative Research Program (TCRP).  1999.  A Handbook for Measuring 

Customer Satisfaction and Service Quality.  TCRP Report 47.  Washington, DC: 

Transportation Research Board, National Research Council. 

Turnquist, M.  1978.  A model for investigating the effects of service frequency and 

reliability on bus passenger waiting times.  Transportation Research Record, 663, 

70-73. 

Turnquist, M. and S. Blume, S.  1980.  Evaluating potential effectiveness of headway 

control strategies for transit systems.  Transportation Research Record 746, 25-29. 

Turnquist, M. and L. Bowman.  1980.  The effects of network structure on reliability of 

transit service. Transportation Research, Part B, 14, 79-86. 



 23

Turnquist, M.  1982.  Strategies for Improving Bus Transit Service Reliability.  Evanston, 

IL: Northwestern University.  (NTIS Report No.  DOT/RSPA/DPB-50-81-27).  

USDOT, Research and Special Programs Administration. 

Welding, P.  1957.  The instability of close interval service.  Operational Research 

Quarterly, 8, 133-148. 

Wilson, N., D. Nelson, A. Palmere, T. Grayson and C. Cederquist.  1992a.  Service 

quality monitoring for high frequency transit lines.  Paper presented at the 71st 

Annual Meeting of the Transportation Research Board, Washington, DC. 

Wilson, N., R. Macchi, R. Fellows and A. Deckoff.  1992b.  Improving service on the 

MBTA Green Line through better operations control.  Transportation Research 

Record 1361, 10-15. 

 
 



 24

 

Figure 1
Passenger Loads and Headway Delay at Peak Load P

Route 14 AM Peak Inbound Trips (n=1058)
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Table 1.  Passenger Activity on Study Routes 
 

 Mean Peak Passenger Load Load Coefficient of Variation Trips Exceeding MLF (%)* 
Route AM In-bound PM Out-bound AM In-bound PM Out-bound AM In-bound PM Out-bound 
4-Division 38.7 44.9 .32 .27 14.8 34.1 

4-Fessenden 32.5 34.7 .35 .37 6.6 10.2 

9-Powell 35.2 32.7 .30 .32 2.7 1.1 

9-Broadway 36.0 37.9 .35 .32 8.4 7.1 

14-Hawthorne 41.0 42.3 .39 .33 19.2 19.3 

15-Belmont 40.1 36.2 .37 .37 22.8 13.5 

12-Sandy Blvd. 39.4 40.3 .29 .27 9.6 17.5 

19-Glisan 40.4 38.3 .30 .33 5.9 8.7 

72-Killingsworth/82nd 33.1 38.2 .42 .31 12.2 15.4 

75-39th/Lombard 27.9 27.4 .42 .35 1.8 0.6 

*  MLF is Tri-Met’s maximum load factor, or 130% of bus seat capacity. 
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Table 2.  Peak Load-Headway Model: 2SLS Parameter Estimates 
 

Route Constant H. Delay Sch. Hwy L.F. Bus R2 n 
 AM Peak Hour In-Bound Service 
4-Division 31.53 2.31 .30 4.51 .21 364
 (5.00) (3.67) (1.24) (.76)  
4-Fessenden 32.06 3.19 -.13 1.76 .31 739
 (15.01) (4.13) (-1.78) (.85)  
9-Powell 34.38 2.86 .12 -.43 .28 624
 (25.83) (9.80) (.90) (-.27)  
9-Broadway 37.54 2.89 -.07 -3.19 .37 370
 (21.15) (6.47) (-.63) (-2.02)  
14-Hawthorne 21.46 3.21 4.34 -3.71 .40 1058
 (12.04) (4.01) (10.86) (-1.62)  
15-Belmont/NW23rd 36.28 3.03 .09 1.50 .37 517
 (14.01) (1.22) (.35) (.56)  
12-Sandy Blvd 35.50 2.36 -.03 2.49 .18 282
 (15.30) (4.76) (-.28) (1.28)  
19-Glisan 38.86 -.78 -.39 -2.77 .11 579
 (10.05) (1.39) (-4.79) (-.75)  
72-Killingsworth/82nd 34.42 2.69 -.59 3.18 .01 941
 (5.45) (7.75) (-1.76) (.55)  
75-39th/Lombard 1.29 1.34 1.88 2.15 .28 919
 (.29) (9.04) (8.45) (.61)  
 PM Peak Hour Out-Bound Service 
4-Division 87.78 1.03 -3.77 2.27 .25 370
 (8.56) (9.07) (-5.18) (.38)  
4-Fessenden 21.70 2.11 1.92 -.01 .14 695
 (5.17) (10.34) (10.35) (-.00)  
9-Powell 25.02 1.71 .83 -1.76 .29 459
 (18.55) (12.66) (6.56) (-1.19)  
9-Broadway 15.09 1.61 2.45 .58 .21 567
 (6.37) (10.79) (9.60) (.42)  
14-Hawthorne 26.85 3.56 2.79 2.32 .28 814
 (9.69) (6.17) (5.18) (.98)  
15-Belmont/23rd 36.93 3.18 -.58 2.60 .23 768
 (14.87) (16.80) (-1.43) (2.00)  
12-Sandy Blvd 41.72 1.15 -.03 -1.62 .15 303
 (8.32) (5.78) (-.05) (-.97)  
19-Glisan 20.02 1.81 1.27 3.71 .10 346
 (2.46) (7.23) (1.80) (1.15)  
72-Killingsworth/82nd 18.44 2.11 2.04 .67 .24 987
 (5.34) (9.26) (8.74) (.23)  
75-39th/Lombard 15.02 1.20 .24 7.38 .15 891
 (2.90) (9.94) (1.21) (1.60)  
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Table 4.  Headway Delay: First-Stage Parameter Estimates, PM Peak Hour Out-Bound Service* 
 

 Route Number 

Variable 4-Div. 4-Fess. 9-Pow. 9-Broad. 14 15 12 19 72 75 

Scheduled Headway -.69 -.13 -.06 -.53 .02 -.10 -.17 -1.29 -.09 -.10 

 (-2.13) (-2.25) (-1.27) (-7.20) (.19) (-1.33) (-1.26) (-7.89) (-1.51) (-.91)

Low Floor Bus 1.28 2.86 -.32 -1.25 -.78 -.16 -.49 -1.46 -.55 -.34 

 (.48) (2.46) (-.67) (-3.00) (-1.76) (-.65) (-1.20) (-1.60) (-.74) (-.14)

Operator Experience -.01 .01 -.03 -.10 -.03 .01 -.08 -.02 -.02 .04 

 (-.39) (.45) (-.80) (-5.65) (-2.55) (.39) (-2.52) (-.61) (-1.27) (2.37)

Distance to Peak Load Pt. .97 .52 .74 .76 .23 .79 .53 .01 .27 .20 

 (6.21) (5.49) (3.85) (8.24) (1.58) (6.46) (4.36) (.07) (7.56) (6.14)

Headway Delay at Origin .79 .57 .75 .76 .36 .76 .81 .76 1.01 .78 

 (18.71) (15.67) (21.61) (16.60) (8.28) (28.47) (19.60) (14.04) (15.53) (15.11)

Constant 5.72 -2.74 .26 4.48 -.19 .08 2.34 14.33 .54 .22 

 (1.26) (-2.21) (.59) (6.99) (-.33) (.18) (1.78) (7.51) (.60) (.08)

           

R2 .53 .31 .53 .54 .09 .52 .59 .48 .25 .22 

n 370 695 459 567 814 768 303 346 987 891 

* Student’s t-statistics are reported in parentheses. 
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Table 3.  Percentage of Trips Exceeding the Maximum Load Factor Standard* 
For Alternative Headway Delay Scenarios 

 
  Reduction in Headway Delay 
Route Observed 25% 50% 75% 

 AM Peak Hour In-Bound Service 

4-Division 14.8% 2.2% 0.3% 0.0% 

4-Fessenden 6.6 1.5 0.0 0.0 

9-Powell 2.7 0.3 0.0 0.0 

9-Broadway 8.4 0.5 0.0 0.0 

14-Hawthorne 19.2 0.9 0.3 0.0 

15-Belmont/NW23rd 22.8 2.5 0.2 0.0 

12-Sandy Blvd 9.6 2.5 1.1 0.0 

19-Glisan 5.9 0.0 0.0 0.0 

72-Killingsworth/82nd 12.2 2.1 0.7 0.0 

75-39th/Lombard 1.8 0.0 0.0 0.0 

Overall 10.4 1.1 -- -- 

 PM Peak Hour Out-Bound Service 

4-Division 34.1 19.5 12.4 1.9 

4-Fessenden 10.2 2.3 0.3 0.0 

9-Powell 1.1 0.2 0.0 0.0 

9-Broadway 7.1 0.2 0.0 0.0 

14-Hawthorne 19.3 2.3 0.4 0.0 

15-Belmont/23rd 13.5 4.0 0.1 0.0 

12-Sandy Blvd 17.5 2.0 0.0 0.0 

19-Glisan 8.7 0.9 0.3 0.0 

72-Killingsworth/82nd 15.4 3.2 0.6 0.0 

75-39th/Lombard 0.6 0.0 0.0 0.0 

Overall 12.0 2.9 0.1 -- 

* The load factor standard is 130% of vehicle seating capacity. 
 
 


